In Vitro Activities of Novel trans -3,5-Disubstituted Pyrrolidinylthio-1β-Methylcarbapenems with Potent Activities against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa

Author:

Nagano Rie1,Shibata Kaneyoshi1,Adachi Yuka1,Imamura Hideaki1,Hashizume Terutaka1,Morishima Hajime1

Affiliation:

1. Banyu Tsukuba Research Institute, Okubo 3, Tsukuba 300-2611, Japan

Abstract

ABSTRACT The in vitro activities of the novel 1β-methylcarbapenems J-111,225, J-114,870, and J-114,871, which have a structurally unique side chain that consists of a trans -3,5-disubstituted 5-arylpyrrolidin-3-ylthio moiety at the C-2 position, were compared with those of reference antibiotics. Among isolates of both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS), 90% were inhibited by J-111,347 (prototype), J-111,225, J-114,870, and J-114,871 at concentrations of 2, 4, 4, and 4 μg/ml (MICs at which 90% of isolates are inhibited [MIC 90 s]), respectively, indicating that these agents were 32- to 64-fold more potent than imipenem, which has an MIC 90 of 128 μg/ml. Although these drugs were less active in vitro than vancomycin, which had MIC 90 s of 1 and 2 μg/ml for MRSA and MRCoNS, respectively, the new carbapenems displayed better killing kinetics than vancomycin. The potent anti-MRSA activity was ascribed to the excellent affinities of the new carbapenems for penicillin-binding protein 2a of MRSA. Since the new carbapenems also exhibited good activity against gram-positive and -negative bacteria including clinically important pathogens such as penicillin-resistant Streptococcus pneumoniae , Haemophilus influenzae , members of the family Enterobacteriaceae , Pseudomonas aeruginosa , and Clostridium difficile , as well as MRSA, the novel carbapenems are worthy of further evaluation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3