Characterization of Structural p53 Mutants Which Show Selective Defects in Apoptosis but Not Cell Cycle Arrest

Author:

Ryan Kevin M.1,Vousden Karen H.1

Affiliation:

1. ABL Basic Research Program, NCI-FCRDC, Frederick, Maryland 21702

Abstract

ABSTRACT Suppression of tumor cell growth by p53 results from the activation of both apoptosis and cell cycle arrest, functions which have been shown to be separable activities of p53. We have characterized a series of p53 mutants with amino acid substitutions at residue 175 and show that these mutants fall into one of three classes: class I, which is essentially wild type for apoptotic and cell cycle arrest functions; class II, which retains cell cycle arrest activity but is impaired in the induction of apoptosis; and class III, which is defective in both activities. Several residue 175 mutants which retain cell cycle arrest function have been detected in cancers, and we show that these have lost apoptotic function. Furthermore, several class II mutants have been found to be temperature sensitive for apoptotic activity while showing constitutive cell cycle arrest function. Taken together, these mutants comprise an excellent system with which to investigate the biochemical nature of p53-mediated apoptosis, the function of principal importance in tumor suppression. All of the mutants that showed loss of apoptotic function also showed defects in the activation of promoters from the potential apoptotic targets Bax and the insulin-like growth factor-binding protein 3 gene ( IGF-BP3 ), and a correlation between full apoptotic activity and activation of both of these promoters was also seen with the temperature-sensitive mutants. However, a role for additional apoptotic activities of p53 was suggested by the observation that some mutants retained significant apoptotic function despite being impaired in the activation of Bax - and IGF-BP3 -derived promoters. In contrast to the case of transcriptional activation, a perfect correlation between transcriptional repression of the c- fos promoter and the ability to induce apoptosis was seen, although the observation that Bax expression induced a similar repression of transcription from this promoter suggests that this may be a consequence, rather than a cause, of apoptotic death.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3