Vitamin B12-Mediated Restoration of Defective Anaerobic Growth Leads to Reduced Biofilm Formation in Pseudomonas aeruginosa

Author:

Lee Kang-Mu,Go Junhyeok,Yoon Mi Young,Park Yongjin,Kim Sang Cheol,Yong Dong Eun,Yoon Sang Sun

Abstract

ABSTRACTPseudomonas aeruginosaundergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO3) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments againstP. aeruginosabiofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B12to be a molecule that can reinstate defective anaerobic growth ofP. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B12, an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B12, the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth ofP. aeruginosawith normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B12, further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth ofP. aeruginosaand illustrates the ability of vitamin B12to modulate the biofilm-forming capacity ofP. aeruginosaunder such condition.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3