Klebsiella pneumoniae TolC contributes to antimicrobial resistance, exopolysaccharide production, and virulence

Author:

Bina X. Renee1,Weng Yuding1,Budnick James1,Van Allen Mia E.1,Bina James E.1ORCID

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

Abstract

ABSTRACT Klebsiella pneumoniae is a Gram-negative bacterium that causes a variety of human diseases, ranging from pneumonia to urinary tract infections and invasive diseases. The emergence of K. pneumoniae strains that are resistant to multiple antibiotics has made treatment more complex and led to K. pneumoniae becoming a global health threat. Addressing this threat necessitates the development of new therapeutic strategies to combat this pathogen, including strategies to overcome antimicrobial resistance and therapeutics for novel targets such as antivirulence. Here, we investigated the function of TolC, an outer membrane protein essential for the function of tripartite transporters, in K. pneumoniae . Mutation of tolC rendered K. pneumoniae hypersensitive to multiple antibiotics. Moreover, the tolC mutation impaired capsule production and affected the expression of key capsule biosynthetic genes, indicating a regulatory role for TolC in capsule biosynthesis. Additionally, TolC was essential for growth under iron-limiting conditions, suggesting its involvement in iron acquisition. The tolC mutant exhibited increased adherence to human enterocytes and enhanced serum sensitivity. In the Galleria mellonella infection model, the tolC mutant displayed reduced virulence compared to the wild type. Our findings highlight the pleiotropic role of TolC in K. pneumoniae pathobiology, influencing antimicrobial resistance, capsule production, iron homeostasis, adherence to host cells, and virulence. Understanding the multifaceted role of TolC in K. pneumoniae may guide the development of new therapeutic strategies against this pathogen. 

Funder

HHS | NIH | NIAID | Division of Intramural Research, National Institute of Allergy and Infectious Diseases

HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3