The SMC5/6 Complex Interacts with the Papillomavirus E2 Protein and Influences Maintenance of Viral Episomal DNA

Author:

Bentley Peris1,Tan Min Jie Alvin1,McBride Alison A.2,White Elizabeth A.3,Howley Peter M.1

Affiliation:

1. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

2. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA

3. Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Abstract

The high-risk human papillomaviruses (HPVs) are the etiological cause of cervical cancer and the most common sexually transmitted infection. While the majority of infections may be asymptomatic or cause only benign lesions, persistent infection with the oncogenic high-risk HPV types may lead to serious diseases, such as cervical cancer, anogenital carcinoma, or head and neck oropharyngeal squamous cell carcinoma. The identification of virus-host protein interactions provides insights into the mechanisms of viral DNA persistence, viral genome replication, and cellular transformation. Elucidating the mechanism of early events in the virus replication cycle as well as of integration of viral DNA into host chromatin may present novel antiviral strategies and targets for counteracting persistent infection. The E2 protein is an important viral regulatory protein whose functions are mediated through interactions with host cell proteins. Here we explore the interaction of E2 with SMC5/6 and the functional consequences.

Funder

HHS | NIH | National Cancer Institute

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference74 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3