Effects of Mutations in the G Tract of the Human Immunodeficiency Virus Type 1 Polypurine Tract on Virus Replication and RNase H Cleavage

Author:

Julias John G.1,McWilliams Mary Jane2,Sarafianos Stefan G.3,Alvord W. Gregory4,Arnold Eddy3,Hughes Stephen H.2

Affiliation:

1. Basic Research Program, SAIC-Frederick, Inc.

2. HIV Drug Resistance Program

3. Center for Advanced Biotechnology and Medicine (CABM) and Rutgers University Chemistry Department, Piscataway, New Jersey

4. Data Management Services, Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, Maryland

Abstract

ABSTRACT The RNase H cleavages that generate and remove the polypurine tract (PPT) primer during retroviral reverse transcription must be specific in order to create a linear viral DNA that is suitable for integration. Lentiviruses contain a highly conserved sequence consisting of six guanine residues at the 3′ end of the PPT (hereafter referred to as the G tract). We introduced mutations into the G tract of a human immunodeficiency virus type 1-based vector and determined the effects on the virus titer and RNase H cleavage specificity. Most mutations in the G tract had little or no effect on the virus titer. Mutations at the second and fifth positions of the G tract increased the proportion of two-long-terminal-repeat (2-LTR) circle junctions with one or two nucleotide insertions. The second and fifth positions of the G tract make specific contacts with amino acids in the RNase H domain that are important for RNase H cleavage specificity. These complementary data define protein-nucleic acid interactions that help control the specificity of RNase H cleavage. When the G-tract mutants were analyzed in a viral background that was deficient in integrase, in most cases the proportion of consensus 2-LTR circle junctions increased. However, in the case of a mutant with Ts at the second and fifth positions of the G tract, the proportion of 2-LTR circle junctions containing the one-nucleotide insertion increased, suggesting that linear viral DNAs containing an extra base are substrates for integration. This result is consistent with the idea that the 3′ end-processing reactions of retroviral integrases may help to generate defined ends from a heterogenous population of linear viral DNAs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3