Accelerated Prion Disease in the Absence of Interleukin-10

Author:

Thackray Alana M.1,McKenzie Andrew N.2,Klein Michael A.3,Lauder Angus2,Bujdoso Raymond1

Affiliation:

1. Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge

2. Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom

3. Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany

Abstract

ABSTRACT The identity of pro- and anti-inflammatory cytokines in the neuropathogenesis of prion diseases remains undefined. Here we have investigated the role of anti-inflammatory cytokines on the progression of prion disease through the use of mice that lack interleukin-4 (IL-4), IL-10, IL-13, or both IL-4 and IL-13. Collectively our data show that among these anti-inflammatory cytokines, IL-10 plays a prominent role in the regulation of prion disease. Mice deficient in IL-10 are highly susceptible to the development of prion disease and show a markedly shortened incubation time. In addition, we have correlated cytokine gene expression in prion-inoculated IL-10 −/− mice to wild-type-inoculated animals. Our experiments show that in the absence of IL-10 there is an early expression of tumor necrosis factor alpha (TNF-α). In wild-type prion-inoculated mice, the expression of TNF-α mRNA occurs at a later time point that correlates with the extended incubation time for terminal disease development in these animals compared to those that lack IL-10. Elevated levels of IL-13 mRNA are found at early time points in the central nervous system of prion-inoculated IL-10 −/− mice. At terminal disease, the brains of wild-type mice inoculated with RML or ME7 are characterized by elevated levels of mRNA for the proinflammatory cytokines TNF-α and IL-1β, together with the anti-inflammatory cytokines IL-10, IL-13, and transforming growth factor beta. Our data are consistent with a role for proinflammatory cytokines in the initiation of pathology during prion disease and an attempt by anti-inflammatory cytokines to regulate the ensuing, invariably fatal pathology.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3