Affiliation:
1. Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
2. Cargill Cocoa and Chocolate, Wormer, The Netherlands
Abstract
ABSTRACT
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (
P
< 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and
Enterobacteriaceae
(1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the
Bacillaceae
,
Pseudomonadaceae
, and
Enterococcaceae
. Eleven species of ThrS were found, but
Bacillus licheniformis
and the
Bacillus subtilis
complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing.
B. subtilis
complex members, particularly
B. subtilis
subsp.
subtilis
, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献