Abstract
The unstable ability to metabolize lactose (lac) via the phosphoenolpyruvate-phosphotransferase system (PTS) was examined in Streptococcus cremoris B1. The presence of functional lactose-specific PTS enzymes was correlated with the presence of a distinct plasmid species. Characterization of deoxyribonucleic acid extracted from lactose-positive (Lac+) S. cremoris B1 revealed two plasmids having molecular weights of 9 X 10(6) and 36 X 10(6). An acriflavine (BC1)-induced, lactose-negative (Lac-) mutant possessed no plasmids and was devoid of all three lac-specific PTS enzymes. A Lac- mutant (DA2) isolated by growing at elevated temperatures only possessed the 9 X 10(6)-dalton plasmid and also lacked the lac PTS enzymes. A spontaneous Lac- mutant possessed both the 9 X 10(6)-and 36 X 10(6)-dalton plasmids. This mutant displayed FIII-lac and phospho-beta-D-galactosidase (P-beta-gal) activity but was deficient in EII-lac activity. The spontaneous Lac- strain reverted to both full and partial lactose-fermenting phenotypes having FIII-lac, EII-lac, and P-beta-gal activities. BC1 and DA2 Lac- mutants reverted only to the partial lactose-fermenting phenotype having P-beta-gal activity; EII-lac and FIII-lac activities were absent. The results indicate that the genetic determinants for EII-lac, FIII-lac, and P-beta-gal are located on the 36 X 10(6)-dalton plasmid in S. cremoris B1. Evidence for a second chromosomally associated P-beta-gal gene operating in the partial lactose-fermenting revertants is also presented.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献