Steady-State Hydrogen Peroxide Induces Glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa

Author:

Deng Xin1,Liang Haihua1,Ulanovskaya Olesya A.23,Ji Quanjiang1,Zhou Tianhong1,Sun Fei1,Lu Zhike1,Hutchison Alan L.1,Lan Lefu4,Wu Min5,Cravatt Benjamin F.23,He Chuan1

Affiliation:

1. Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA

2. The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA

3. Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA

4. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong Zhangjiang Hi-Tech Park, Shanghai, China

5. Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA

Abstract

ABSTRACT Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H 2 O 2 by bacterial catalase, only steady-state but not one-dose treatment with H 2 O 2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H 2 O 2 , which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H 2 O 2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H 2 O 2 -stalled glycolysis in S. aureus and P. aeruginosa , respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3