Corrected and republished from: “VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection”

Author:

Hu Ciara T.1ORCID,Diaz Karina1ORCID,Yang Linda C.1,Sharma Anjali1,Greenberg Harry B.23ORCID,Smith Jason G.1ORCID

Affiliation:

1. Department of Microbiology, University of Washington School of Medicine , Seattle, Washington, USA

2. Department of Medicine, Stanford School of Medicine , Stanford, California, USA

3. Department of Microbiology and Immunology, Stanford School of Medicine , Stanford, California, USA

Abstract

ABSTRACT Fecal-oral pathogens encounter constitutively expressed enteric alpha-defensins in the intestine during replication and transmission. Alpha-defensins can be potently antiviral and antibacterial; however, their primary sequences, the number of isoforms, and their activity against specific microorganisms often vary greatly between species, reflecting adaptation to species-specific pathogens. Therefore, alpha-defensins might influence not only microbial evolution and tissue tropism within a host but also species tropism and zoonotic potential. To investigate these concepts, we generated a panel of enteric and myeloid alpha-defensins from humans, rhesus macaques, and mice and tested their activity against group A rotaviruses, an important enteric viral pathogen of humans and animals. Rotaviral adaptation to the rhesus macaque correlated with resistance to rhesus enteric but not myeloid alpha-defensins and sensitivity to human alpha-defensins. Infection by mouse and human rotaviruses was either resistant to or increased by host enteric alpha-defensins, although the effects of cross-species alpha-defensins did not follow an obvious pattern. Because infection by all rotaviruses tested was resistant to or enhanced by enteric alpha-defensins from their hosts, exposure to alpha-defensins may have shaped their evolution. We then used a genetic approach to identify the viral attachment and penetration protein, VP4, as a determinant of alpha-defensin sensitivity. Our results provide a foundation for future studies of the VP4-dependent mechanism of defensin neutralization, highlight the species-specific activities of alpha-defensins, and focus future efforts on a broader range of rotaviruses that differ in VP4 to uncover the potential for enteric alpha-defensins to influence species tropism. Importance Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | NIH Office of the Director

U.S. Department of Veterans Affairs

HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health

HHS | NIH | National Center for Advancing Translational Sciences

HHS | NIH | National Cancer Institute

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3