H2O2 induces monocyte apoptosis and reduces viability of Mycobacterium avium-M. intracellulare within cultured human monocytes

Author:

Laochumroonvorapong P1,Paul S1,Elkon K B1,Kaplan G1

Affiliation:

1. Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA.

Abstract

Mycobacterium avium-M. intracellulare, an intracellular parasite of mononuclear phagocytes, rarely causes disease in immunocompetent individuals. In contrast, in human immunodeficiency virus type 1-infected patients, M. avium-M. intracellulare can infect almost every tissue and organ. This suggests that immunocompetent individuals have a protective mechanism to control or prevent the infection. How mycobacterial may be killed by the host immune response is unclear. We have recently reported that induction of apoptosis of Mycobacterium bovis BCG-infected macrophages with ATP4- was associated with killing of the intracellular mycobacteria. In the present study, a long-term culture of M. avium-M. intracellulare-infected monocytes was used to further evaluate the interaction between M. avium-M. intracellulare and primary human monocytes. In our system, M. avium-M. intracellulare parasitized the human monocytes and appeared to replicate slowly over 14 days within the host cells. To examine the role of apoptotic mechanisms in survival or death of intracellular mycobacteria, M. avium-M. intracellulare-infected human monocytes were treated with a monoclonal antibody to Fas receptor (APO-1/CD95) or with various concentrations of H2O2. Although both of these exogenous agents induced monocyte apoptosis, optimal killing (65% reduction in CFU) of intracellular M. avium-M. intracellulare was observed only when M. avium-M. intracellulare-infected cells were treated with 10 mM H2O2. Fas-induced apoptosis did not affect M. avium-M. intracellulare viability. Our results suggest that not all stimuli of monocyte apoptosis induce killing of intracellular M. avium-M. intracellulare. Since release of H2O2 following phagocytosis of mycobacteria has been documented, H2O2-induced apoptotic death of M. avium-M. intracellulare-infected monocytes and its association with killing of the intracellular bacilli may be a physiological mechanism of host defense against M. avium-M. intracellulare.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference42 articles.

1. Recombinant cytokines for controlling mycobacterial infections;Bermudez L. E.;Trends Microbiol.,1995

2. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex;Bermudez L. E. M.;J. Immunol.,1988

3. Oxidative and non-oxidative intracellular killing of Mycobacterium avium complex;Bermudez L. E. M.;Microb. Pathogen.,1989

4. Interferon decreases the growth inhibition of Mycobacterium avium-intracellulare complex by fresh human monocytes but not by culture-derived macrophages;Blanchard D. K.;J. Infect. Dis.,1991

5. Oxidative stress as a mediator of apoptosis;Buttke T. M.;Immunol. Today,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3