In Vitro Combination of Amdoxovir and the Inosine Monophosphate Dehydrogenase Inhibitors Mycophenolic Acid and Ribavirin Demonstrates Potent Activity against Wild-Type and Drug-Resistant Variants of Human Immunodeficiency Virus Type 1

Author:

Borroto-Esoda Katyna1,Myrick Florence1,Feng Joy1,Jeffrey Jerry2,Furman Phillip3

Affiliation:

1. Gilead Sciences Inc., Durham

2. Glaxo SmithKline, Research Triangle Park, North Carolina

3. Pharmasset Inc., Tucker, Georgia

Abstract

ABSTRACT Amdoxovir [(−)-β- d -2,6-diaminopurine dioxolane (DAPD)] is a nucleoside analogue reverse transcriptase inhibitor of human immunodeficiency virus type 1 (HIV-1) replication. DAPD is deaminated by adenosine deaminase to the guanosine analogue dioxolane guanosine (DXG), which is subsequently phosphorylated to the corresponding 5′ triphosphate (DXG-TP). DXG-TP competes with the natural substrate dGTP for binding to the enzyme-nucleic acid complex. Mycophenolic acid (MPA) and ribavirin (RBV), inhibitors of inosine monophosphate dehydrogenase (IMPDH), inhibit the de novo synthesis of guanine nucleotides, including dGTP. Reducing the intracellular levels of dGTP would be expected to augment the antiviral activity of analogues of deoxyguanosine. In this study we examined the effect of MPA and RBV on the anti-HIV activity of DAPD and DXG. When tested against wild-type virus, both MPA and RBV decreased the 50% effective concentration (EC 50 ) for DXG by at least 10-fold. In contrast, both MPA and RBV increase the EC 50 value for zidovudine. MPA and RBV completely reversed the resistance to DXG observed with HIV isolates containing mutations which confer partial resistance to DAPD and DXG. Similarly, when tested against a mutant virus fully resistant to inhibition by DAPD (K65R/Q151M), MPA and RBV reduced the EC 50 for DAPD to within twofold of that for the wild type. The combination of MPA or RBV with DAPD or DXG did not result in increased cytotoxicity or reduced levels of mitochondrial DNA when tested at physiologically relevant concentrations. These studies suggest a potential role for the use of IMPDH inhibitors in combination therapy with amdoxovir in the treatment of HIV.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3