Lack of retrovirus gene expression in somatic cell hybrids of friend cells and teratocarcinoma cells with a teratocarcinoma phenotype

Author:

Asche W,Colletta G,Warnecke G,Nobis P,Pennie S,King R M,Ostertag W

Abstract

Two types of hybrids between cells with erythroid phenotype (Friend cells) and teratocarcinoma cells can be distinguished: cell hybrids with an erythroid phenotype, which release or can be induced to release large amounts of Friend spleen focus-forming virus (F-SFFV) on exposure to bromodeoxyuridine and cell hybrids with a teratocarcinoma phenotype, which do not release Friend virus and are not inducible for F-SFFV release. In this paper, we attempted to relate these differences to the expression of F-SFFV and Friend murine leukemia virus (F-MuLV) functions. Teratocarcinoma phenotype hybrids retained F-SFFV-and F-MuLV-related provirus sequences. They did not express F-SFFV- or F-MuLV-related RNA or proteins. The hybrids differentiated to endoderm-like cells on exposure to retinoic acid or hexamethylene-bis -acetamide. These cells, in contrast to the teratocarcinoma phenotype (uninduced) cells expressing SSEA-1-like antigens, did not express SSEA-1-like antigens; they formed typical, prekeratin-staining cytoskeletal structures and could be induced to release mouse interferon. The differentiating cells, but not the uninduced teratocarcinoma hybrids, were infected productively with F-MuLV or the F-MuLV--F-SFFV complex. They, however, did not express endogenous F-SFFV. Endogenous F-SFFV functions could not be rescued by infection with F-MuLV. Induction of teratocarcinoma hybrids with retinoic acid did not activate endogenous F-MuLV or F-SFFV transcription or protein synthesis. These data demonstrated two control mechanisms of Friend virus repression: one which acted trans during formation of the cell hybrids and was maintained only in teratocarcinoma phenotype cells and the other which acted cis and was still operative during induction of endodermal differentiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3