Functional Prokaryotic RubisCO from an Oceanic Metagenomic Library

Author:

Witte Brian1,John David2,Wawrik Boris3,Paul John H.2,Dayan David4,Tabita F. Robert1

Affiliation:

1. Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio

2. College of Marine Science, University of South Florida, St. Petersburg, Florida

3. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma

4. New College of Florida, Sarasota, Florida

Abstract

ABSTRACT Culture-independent studies have indicated that there is significant diversity in the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzymes used by marine, freshwater, and terrestrial autotrophic bacteria. Surprisingly, little is known about the catalytic properties of many environmentally significant RubisCO enzymes. Because one of the goals of RubisCO research is to somehow modify or select for RubisCO molecules with improved kinetic properties, a facile means to isolate functional and novel RubisCO molecules directly from the environment was developed. In this report, we describe the first example of functional RubisCO proteins obtained from genes cloned and characterized from metagenomic libraries derived from DNA isolated from environmental samples. Two form IA marine RubisCO genes were cloned, and each gene supported both photoheterotrophic and photoautotrophic growth of a RubisCO deletion strain of Rhodobacter capsulatus , strain SBI/II , indicating that catalytically active recombinant RubisCO was synthesized. The catalytic properties of the metagenomic RubisCO molecules were further characterized. These experiments demonstrated the feasibility of studying the functional diversity and enzymatic properties of RubisCO enzymes without first cultivating the host organisms. Further, this “proof of concept” experiment opens the way for development of a simple functional screen to examine the properties of diverse RubisCO genes isolated from any environment, and subsequent further bioselection may be possible if the growth conditions of complemented R. capsulatus strain SBI/II are varied.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3