Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe 3+ -Reducing Metabolite Secretion

Author:

Shah Firoz1ORCID,Mali Tuulia1,Lundell Taina K.1ORCID

Affiliation:

1. Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

Abstract

ABSTRACT Basidiomycota fungi in the order Polyporales are specified to decomposition of dead wood and woody debris and thereby are crucial players in the degradation of organic matter and cycling of carbon in the forest ecosystems. Polyporales wood-decaying species comprise both white rot and brown rot fungi, based on their mode of wood decay. While the white rot fungi are able to attack and decompose all the lignocellulose biopolymers, the brown rot species mainly cause the destruction of wood polysaccharides, with minor modification of the lignin units. The biochemical mechanism of brown rot decay of wood is still unclear and has been proposed to include a combination of nonenzymatic oxidation reactions and carbohydrate-active enzymes. Therefore, a linking approach is needed to dissect the fungal brown rot processes. We studied the brown rot Polyporales species Fomitopsis pinicola by following mycelial growth and enzyme activity patterns and generating metabolites together with Fenton-promoting Fe 3+ -reducing activity for 3 months in submerged cultures supplemented with spruce wood. Enzyme activities to degrade hemicellulose, cellulose, proteins, and chitin were produced by three Finnish isolates of F. pinicola . Substantial secretion of oxalic acid and a decrease in pH were notable. Aromatic compounds and metabolites were observed to accumulate in the fungal cultures, with some metabolites having Fe 3+ -reducing activity. Thus, F. pinicola demonstrates a pattern of strong mycelial growth leading to the active production of carbohydrate- and protein-active enzymes, together with the promotion of Fenton biochemistry. Our findings point to fungal species-level “fine-tuning” and variations in the biochemical reactions leading to the brown rot type of wood decay. IMPORTANCE Fomitopsis pinicola is a common fungal species in boreal and temperate forests in the Northern Hemisphere encountered as a wood-colonizing saprotroph and tree pathogen, causing a severe brown rot type of wood degradation. However, its lignocellulose-decomposing mechanisms have remained undiscovered. Our approach was to explore both the enzymatic activities and nonenzymatic Fenton reaction-promoting activities (Fe 3+ reduction and metabolite production) by cultivating three isolates of F. pinicola in wood-supplemented cultures. Our findings on the simultaneous production of versatile enzyme activities, including those of endoglucanase, xylanase, β-glucosidase, chitinase, and acid peptidase, together with generation of low pH, accumulation of oxalic acid, and Fe 3+ -reducing metabolites, increase the variations of fungal brown rot decay mechanisms. Furthermore, these findings will aid us in revealing the wood decay proteomic, transcriptomic, and metabolic activities of this ecologically important forest fungal species.

Funder

Academy of Finland

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3