Genetic Variability and Stability of Anaplasma phagocytophila msp2 ( p44 )

Author:

Caspersen Karen12,Park Jin-Ho1,Patil Surekha1,Dumler J. Stephen1

Affiliation:

1. Department of Pathology Division of Medical Microbiology,

2. Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

ABSTRACT Anaplasma ( Ehrlichia ) phagocytophila 's major immunodominant surface protein antigen, Msp2 (P44, 44-kDa antigen), is encoded by a family of paralogous genes characterized by conserved sequences flanking a hypervariable region. The antigenic profiles of most strains of A. phagocytophila are different, and the differences are principally related to Msp2 expression. To date, multiple unique msp2 gene paralogs have been found in A. phagocytophila isolates, but the overall number in the genome of a single strain is not yet known. Changes in msp2 expression may be related to antigenic variability; thus, we examined the minimal complement of msp2 genes or pseudogenes in two strains of A. phagocytophila and the number of transcriptionally active msp2 gene paralogs during low-passage, steady-state, in vitro propagation. Of 15 BDS strain clones, 1 had a hypervariable region identical to the region in a clone obtained from a BDS strain genomic library previously prepared from organisms after only two horse passages. When 124 Webster strain clones were examined, 18 unique hypervariable regions were identified. Of 64 Webster strain cDNA clones, 56 (87.5%) were derived from a single gene, and transcripts from six additional msp2 genes were also identified. The sequences of several hypervariable regions that were ≥97% similar to regions present in other strains were identified by performing a BLAST analysis of sequences deposited in the GenBank database. These findings suggest that antigenic variability results from transcription of one or a few of the multiple paralogs and not from genetic instability that results in random accumulated mutations, although the possibility that gene recombination plays a role cannot be eliminated. The predominant Msp2 pattern in vitro is determined by transcription from a single gene.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3