Affiliation:
1. The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850
Abstract
ABSTRACT
Over the past several years, significant advances have been made in the molecular genetics of the
Mollicutes
(the simplest cells that can be grown in axenic culture). Nevertheless, a number of basic molecular tools are still required before genetic manipulations become routine. Here we describe the development of a new dominant selectable marker based on the enzyme puromycin-
N
-acetyltransferase from
Streptomyces alboniger
. Puromycin is an antibiotic that mimics the 3′-terminal end of aminoacylated tRNAs and attaches to the carboxyl terminus of growing protein chains. This stops protein synthesis. Because puromycin conscripts rRNA recognition elements that are used by all of the various tRNAs in a cell, it is unlikely that spontaneous antibiotic resistance can be acquired via a simple point mutation—an annoying issue with existing mycoplasma markers. Our codon-optimized cassette confers pronounced puromycin resistance on all five of the mycoplasma species we have tested so far. The resistance cassette was also designed to function in
Escherichia coli
, which simplifies the construction of shuttle vectors and makes it trivial to produce the large quantities of DNA generally necessary for mycoplasma transformation. Due to these and other features, we expect the puromycin marker to be a widely applicable tool for studying these simple cells and pathogens.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献