Cyclic AMP may not be involved in catabolite repression in Saccharomyes cerevisiae: evidence from mutants capable of utilizing it as an adenine source

Author:

Matsumoto K,Uno I,Toh-E A,Ishikawa T,Oshima Y

Abstract

Mutants able to utilize 5'-AMP or cyclic AMP as the adenine source were isolated from an ade6 ade10 double mutant by ethyl methane sulfonate mutagenesis. A single amp1 mutation, primarily selected on 5'-AMP medium, confers the phenotype for utilization of exogenous 5'-AMP as the adenine source. From the ade6 ade10 amp1 triple mutant, a mutant able to utilize cyclic AMP was isolated, and the mutant phenotype was proven to be due to the simultaneous occurrence of triple mutations designated as cam1, cam2, and cam3. The cam3 mutation, but not cam1 or cam2, also confers the phenotype for utilizing 5'-AMP, the same phenotype as the amp1 mutation. All of these mutations are recessive to the respective wild-type counterparts. Cells having the ade6 ade10 amp1 cam1 cam2 cam3 genotype showed significant ability to take up exogenous cyclic AMP, whereas no differences were observed in cyclic AMP phosphodiesterase activity in comparison with that of the original strains used in the mutant isolation. Since glucose severely repressed galactokinase synthesis in the constitutive GAL81 mutant having the ade6 ade10 amp1 cam1 cam2 cam3 genotype, irrespective of the presence or absence of cyclic AMP in the medium, it was suggested that cyclic AMP is not involved in the mechanism of catabolite repression in Saccharomyces cerevisiae. It does, however, have a stimulative effect on the galactokinase synthesis in the GAL81 mutant in the absence of glucose.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3