Characterization of Enzymatic Antioxidants in the Lichen Ramalina lacera and Their Response to Rehydration

Author:

Weissman Lior1,Garty Jacob12,Hochman Ayala3

Affiliation:

1. Department of Plant Sciences

2. Institute for Nature Conservation Research

3. Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Abstract

ABSTRACT Lichens are slow-growing associations of fungi and green algae or cyanobacteria. This symbiotic association forms a common thallus that does not possess roots or a waxy cuticle and depends mainly on atmospheric input of mineral nutrients. The lifestyle of most lichens is composed of alternating periods of desiccation with low metabolic activity and hydration that induces increase in their metabolism. We have previously shown that rehydration of the naturally desiccated lichen Ramalina lacera resulted in a rapid increase in photosynthesis and was accompanied by a burst of intracellular production of reactive oxygen species and nitric oxide, as well as a transient decrease in water-soluble antioxidant capacity. We report here on enzymatic antioxidants of R. lacera and their response to rehydration. Native gel electrophoresis of crude extracts of R. lacera stained for superoxide dismutase (SOD) activity revealed four Fe-SOD and four Mn-SOD electromorphs that are synthesized by the alga, a Cu/Zn-SOD and a Mn-SOD that are the product of the fungus, and two catalases synthesized one by the fungus and the other by the algae. In addition, we detected glutathione reductase and glucose-6-phosphate dehydrogenase activities in crude extracts of R. lacera . Rehydration of the thalli resulted in a decrease in SOD activity of all forms, and a transient decrease in total catalase activity, as well as a decrease in the antioxidant auxiliary enzymes glutathione reductase and glucose-6-phosphate dehydrogenase.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3