Hypoexpression of major histocompatibility complex molecules on Legionella pneumophila phagosomes and phagolysosomes

Author:

Clemens D L1,Horwitz M A1

Affiliation:

1. Department of Medicine, School of Medicine, University of California, Los Angeles 90024.

Abstract

Legionella pneumophila is a facultative intracellular pathogen that parasitizes host mononuclear phagocytes. Cell-mediated immunity is pivotal to host defense against L. pneumophila, and the infected host cell may play a central role in processing and presenting parasite antigens to lymphocytes mediating cell-mediated immune response. However, in the case of L. pneumophila and intracellular parasites in general, little is known about the intracellular trafficking of parasite antigens, the influence of parasite infection on major histocompatibility complex (MHC) expression, or the relationship of MHC molecules to sites of parasite replication. To learn more about this, we have used flow cytometry to study the expression of HLA-DR by monocytes infected with L. pneumophila and cryosection immunogold electron microscopy to study the distribution of MHC class I and II molecules on L. pneumophila phagosomes. Flow cytometry analysis demonstrated that L. pneumophila infection has little effect on the overall expression of HLA-DR by monocytes. Cryosection immunogold studies revealed abundant staining for MHC class I and II molecules on the plasma membrane of infected monocytes but little or no staining on the membranes of mature L. pneumophila phagosomes. Cryosection immunogold studies of an avirulent mutant of L. pneumophila that, unlike the wild type, does not inhibit phagosome-lysosome fusion and subsequently survives but does not multiply in a phagolysosome yielded similar results. We have previously found that MHC class I and II molecules are excluded from nascent phagosomes during coiling and conventional phagocytosis. The present work demonstrates that MHC molecules do not accumulate appreciably in the L. pneumophila phagosome as it matures and at a point in the life cycle of the organism in which it is replicating and producing immunoprotective T-cell antigens. This suggests that L. pneumophila does not reside in a typical endosomal compartment in the host cell and that L. pneumophila antigens may encounter MHC molecules at extraphagosomal sites within the host cell.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference36 articles.

1. Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH;Antoine J.;Infect. Immun.,1990

2. Localization of major histocompatibility complex class II molecules in phagolysosomes of murine macrophages infected with Leishmania amazonensis;Antoine J. C.;Infect. Immun.,1991

3. Marked increase in Ia-bearing macrophages during Trypanosoma ciuzi infection;Behbehani K;Clin. Immunol. Immunopathol.,1981

4. Regulation of macrophage populations. I. Preferential induction of Ia-rich peritoneal exudates by immunological stimuli;Belier D. I.;J. Immunol.,1980

5. Interferongamma-activated human monocytes inhibit the intracellular multiplication of L. pneumophila;Bhardwaj N.;J. Immunol.,1986

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3