Essential Role for the Legionella pneumophila Rep Helicase Homologue in Intracellular Infection of Mammalian Cells

Author:

Harb Omar S.1,Abu Kwaik Yousef1

Affiliation:

1. Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084

Abstract

ABSTRACT We have previously isolated 32 mutants of Legionella pneumophila that are defective in the infection of mammalian cells but not protozoa. The mutated loci have been designated macrophage-specific infectivity ( mil ) loci. In this study we characterized the mil mutant GK11. This mutant was incapable of growth within U937 macrophage-like cells and WI-26 alveolar epithelial cells. This defect in intracellular replication correlated with a defect in cytopathogenicity to these cells. Sequence analysis of the GK11 locus revealed it to be highly similar to rep helicase genes of other bacteria. Since helicase mutants of Escherichia coli are hypersensitive to thymine starvation, we examined the sensitivity of GK11 to thymineless death (TLD). In the absence of thymine and thymidine, mutant GK11 did not undergo TLD but was defective for in vitro growth, and the defect was partially restored when these compounds were added to the growth medium. In addition, supplementation with thymidine or thymine partially restored the ability of GK11 to grow within and kill U937 macrophage-like cells. The data suggested that the low levels of thymine or thymidine in the L. pneumophila phagosome contributed to the defect of GK11 within macrophages. Using confocal laser scanning microscopy, we determined the effect of the mutation in the Rep helicase homologue on the intracellular trafficking of GK11 within macrophages. In contrast to the wild-type strain, phagosomes harboring GK11 colocalized with several late endosomal/lysosomal markers, including LAMP-1, LAMP-2, and cathepsin D. In addition, only 50% of the GK11 phagosomes colocalized with the endoplasmic reticulum marker BiP 4 h postinfection. Colocalization of BiP with GK11 phagosomes was absent 6 h postinfection, while 90% of the wild-type phagosomes colocalized with this marker at both time points. We propose that the low level of thymine within the L. pneumophila phagosome in combination with simultaneous exposure to multiple stress stimuli results in deleterious mutations that cannot be repaired in the rep helicase homologue mutant, rendering it defective in intracellular replication.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3