Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors

Author:

Tardy F1,Nasser W1,Robert-Baudouy J1,Hugouvieux-Cotte-Pattat N1

Affiliation:

1. Laboratoire de Génétique Moléculaire des Microorganismes, UMR-CNRS 5577, INSA, Villeurbanne, France.

Abstract

In Erwinia chrysanthemi 3937, pectate lyase activity mainly results from the cumulative action of five major isoenzymes, PelA to PelE. Comparison of their amino acid sequences revealed two families, PelB-C and PelA-D-E. Molecular cloning permitted expression of the different pel genes in Escherichia coli and the isolation of each Pel independently from the other isoenzymes. We used similar experimental conditions to overproduce and purify the five Pels in a one-step chromatography method. We analyzed some of the basic enzymatic properties of these five isoenzymes. PelA has a low specific activity compared to the other four enzymes. PelB and PelC have a high affinity for their substrate: about 10-fold higher than the enzymes of the PelA-D-E group. The optimum pH is more alkaline for PelB and PelC (about 9.2) than for PelA, PelD, and PelE (from 8 to 8.8). Below pH 7, activity was negligible for PelB and PelC, while PelA, PelD, and PelE retained 25 to 30% of their activities. The temperature optima were determined to be 50 degrees C for PelD and PelE, 55 degrees C for PelA, and 60 degrees C for PelB and PelC. Enzymes of the PelB-C group are more stable than those of the PelA-D-E group. Use of substrates presenting various degrees of methylation revealed that PelA, PelD, and PelE are active only for very low levels of methylation, while PelB and PelC are more active on partially methylated pectins (up to 22% for PelC and up to 45% for PelB). Pectate lyases have an absolute requirement for Ca2+ ions. For the five isoenzymes, maximal activity was obtained at a Ca2+ concentration of 0.1 mM. None of the tested cations (Ba2+, Co2+, Cu2+, Mg2+, Mn2+, Sr2+, Zn2+) can substitute for Ca2+. At a high concentration (1 mM), most of the divalent cations inhibited pectate lyase activity. In addition, we demonstrated that two compounds present in plant tissues, epicatechin and salicylic acid, inhibit the pectate lyases at a concentration of 0.2 mM.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3