Herpes Simplex Virus Type 2 Induces Rapid Cell Death and Functional Impairment of Murine Dendritic Cells In Vitro

Author:

Jones C. A.123,Fernandez M.1,Herc K.1,Bosnjak L.4,Miranda-Saksena M.4,Boadle R. A.5,Cunningham A.43

Affiliation:

1. Herpesvirus Research Unit

2. Department of Immunology and Infectious Diseases, The Children's Hospital at Westmead

3. The University of Sydney, Parkville, New South Wales, Australia

4. Centre for Viral Research

5. Electron Microscope Laboratory

Abstract

ABSTRACT Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h postinfection, wild-type (wt) HSV-2 (186) abortively infected murine bone marrow-derived DC and induced early cell death compared to UV-inactivated HSV-2 or mock-infected DC. HSV-2-induced loss of DC viability was more rapid than that induced by HSV-1 and was due, in part, to apoptosis, as shown by TEM, caspase-3 activation, and terminal deoxynucleotidyl transferase-mediated dCTP biotin nick end labeling. HSV induced type-specific changes in the murine DC immunophenotype. At 12 h postinfection, wt HSV-2 upregulated DC major histocompatibility complex (MHC) class II expression, and in contrast to UV-inactivated HSV-2, downregulated expression of MHC class I, but it had no effect on surface CD40, CD80, or CD86. Wt HSV-1 (MC-1) induced only CD40 upregulation. More-profound effects on the DC immunophenotype were observed in HSV-2-infected neonatal DC. Wt HSV of either serotype impaired murine DC-induced T-cell alloproliferation and lipopolysaccharide-induced DC interleukin-12 secretion. Thus, there are marked differences in the levels of HSV-induced cytolysis in DC according to the HSV serotype, although HSV-2 displays immunomodulatory effects on the DC immunophenotype and function similar to those of HSV-1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3