Affiliation:
1. Department of Zoology, University of Oxford, Oxford, United Kingdom
Abstract
ABSTRACT
Considerable uncertainty surrounds the evolutionary rates of and selection pressures acting on arthropod-borne RNA viruses (arboviruses). In particular, it is unclear why arboviruses such as dengue virus show substantial genetic variation within individual humans and mosquitoes yet low long-term rates of amino acid substitution. To address this question, I compared patterns of nonsynonymous variation in populations of dengue virus sampled at different levels of evolutionary divergence. Although nonsynonymous variation was abundant in viral populations within individual humans, there was a marked reduction in the frequency of nonsynonymous mutations in interhost comparisons. Moreover, intrahost genetic variation corresponded to a random pattern of mutation, and most of the sites that exhibited nonsynonymous variation within hosts were invariant at deeper phylogenetic levels. This loss of long-term nonsynonymous variation is the signature of extensive purifying selection such that more than 90% of all nonsynonymous mutations are deleterious. Consequently, although arboviruses are able to successfully adapt to diverse cell types, they are characterized by a high rate of deleterious mutation.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献