The Hepatitis B Virus Polymerase Mutation rtV173L Is Selected during Lamivudine Therapy and Enhances Viral Replication In Vitro

Author:

Delaney William E.1,Yang Huiling1,Westland Christopher E.1,Das Kalyan23,Arnold Eddy23,Gibbs Craig S.1,Miller Michael D.1,Xiong Shelly1

Affiliation:

1. Gilead Sciences Inc., Foster City, California 94404

2. Center for Advanced Biotechnology and Medicine

3. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854

Abstract

ABSTRACT Therapy of chronic hepatitis B virus (HBV) infection with the polymerase inhibitor lamivudine frequently is associated with the emergence of viral resistance. Genotypic changes in the YMDD motif (reverse transcriptase [rt] mutations rtM204V/I) conferred resistance to lamivudine as well as reducing the in vitro replication efficiency of HBV. A second mutation, rtL180M, was previously reported to partially restore replication fitness as well as to augment drug resistance in vitro. Here we report the functional characterization of a third polymerase mutation (rtV173L) associated with resistance to lamivudine and famciclovir. rtV173L was observed at baseline in 9 to 22% of patients who entered clinical trials of adefovir dipivoxil for the treatment of lamivudine-resistant HBV. In these patients, rtV173L was invariably found as a third mutation in conjunction with rtL180M and rtM204V. In vitro analyses indicated that rtV173L did not alter the sensitivity of wild-type or lamivudine-resistant HBV to lamivudine, penciclovir, or adefovir but instead enhanced viral replication efficiency. A molecular model of HBV polymerase indicated that residue rtV173 is located beneath the template strand of HBV nucleic acid near the active site of the reverse transcriptase. Substitution of leucine for valine at this residue may enhance polymerization either by repositioning the template strand of nucleic acid or by affecting other residues involved in the polymerization reaction. Together, these results suggest that rtV173L is a compensatory mutation that is selected in lamivudine-resistant patients due to an enhanced replication phenotype.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3