Oligomerization of Anthrax Toxin Protective Antigen and Binding of Lethal Factor during Endocytic Uptake into Mammalian Cells

Author:

Singh Yogendra1,Klimpel Kurt R.2,Goel Seema1,Swain Prabodha K.1,Leppla Stephen H.2

Affiliation:

1. Centre for Biochemical Technology, Delhi 110007, India,1 and

2. Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 208922

Abstract

ABSTRACT The protective antigen (PA) protein of anthrax toxin binds to a cellular receptor and is cleaved by cell surface furin to produce a 63-kDa fragment (PA63). The receptor-bound PA63 oligomerizes to a heptamer and acts to translocate the catalytic moieties of the toxin, lethal factor (LF) and edema factor (EF), from endosomes to the cytosol. In this report, we used nondenaturing gel electrophoresis to show that each PA63 subunit in the heptamer can bind one LF molecule. Studies using PA immobilized on a plastic surface showed that monomeric PA63 is also able to bind LF. The internalization of PA and LF by cells was studied with radiolabeled and biotinylated proteins. Uptake was relatively slow, with a half-time of 30 min. The number of moles of LF internalized was nearly equal to the number of moles of PA subunit internalized. The essential role of PA oligomerization in LF translocation was shown with PA protein cleaved at residues 313-314. The oligomers formed by these proteins during uptake into cells were not as stable when subjected to heat and detergent as were those formed by native PA. The results show that the structure of the toxin proteins and the kinetics of proteolytic activation, LF binding, and internalization are balanced in a way that allows each PA63 subunit to internalize an LF molecule. This set of proteins has evolved to achieve highly efficient internalization and membrane translocation of the catalytic components, LF and EF.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3