Anion-Coordinating Residues at Binding Site 1 Are Essential for the Biological Activity of the Diphtheria Toxin Repressor

Author:

Goranson-Siekierke Joanne1,Pohl Ehmke2,Hol Wim G. J.23,Holmes Randall K.1

Affiliation:

1. Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262,1 and

2. Departments of Biological Structure and Biochemistry, Biomolecular Structure Program,2 and

3. Howard Hughes Medical Institute,3 University of Washington, Seattle, Washington 98195

Abstract

ABSTRACT The homodimeric diphtheria toxin repressor (DtxR) uses Fe 2+ as a corepressor, binds to iron-regulated promoters, and negatively regulates the syntheses of diphtheria toxin, corynebacterial siderophore, and several other Corynebacterium diphtheriae products. The crystal structure of DtxR shows that the second domain of each monomer has two binding sites for Fe 2+ or certain other divalent metal ions. In addition, site 1 binds a sulfate or phosphate anion, suggesting that phosphate may function intracellularly as a co-corepressor. The effects of alanine substitutions for selected residues in sites 1 and 2 were determined by measuring the β-galactosidase activities of a tox operator/promoter- lacZ reporter construct in Escherichia coli strains expressing each DtxR variant. Our studies demonstrated that single alanine substitutions for the anion-binding residues in site 1 (R80A, S126A, or N130A) caused severely decreased DtxR activity, similar to the effects of alanine substitutions for metal-binding residues in site 2 (C102A, E105A, or H106A) and greater than the effects of alanine substitutions for metal-binding residues in site 1 (H79A, E83A, or H98A) reported previously by other investigators. Various combinations of alanine substitutions for site 1 and site 2 residues were also analyzed to further elucidate the roles of these cation- and anion-binding ligands in DtxR activity. Furthermore, the interaction between residue E20 in the DNA binding domain and R80 in anion/cation binding site 1 was analyzed, and the E20A variant of DtxR was shown to have a phenotype indistinguishable from that of the R80A variant. Our data demonstrated for the first time that the anion-binding residues R80, S126, and N130 at site 1 are essential for DtxR activity. The data also showed that the interaction of E20 in domain 1 with R80 in domain 2, first revealed by X-ray crystallography in apo-DtxR and holo-DtxR, is a structural feature of DtxR that is important for its repressor activity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3