Affiliation:
1. Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen Musashi-Murayama, Tokyo 208-0011, Japan
Abstract
ABSTRACT
A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference46 articles.
1. Persistent Infection Promotes Cross-Species Transmissibility of Mouse Hepatitis Virus
2. Baric, R., B. Yount, L. Hensley, S. A. Peel, and W. Chen. 1997. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol.71:1964-1975.
3. Beauchemin, N., P. Draber, G. Dveksler, P. Gold, S. Gray-Owen, F. Grunert, S. Hammarstrom, K. V. Holmes, A. Karlsson, M. Kuroki, S. H. Lin, L. Lucka, S. M. Najjar, M. Neumaier, B. Obrink, J. E. Shively, K. M. Skubitz, C. P. Stanners, P. Thomas, J. A. Thompson, M. Virji, S. von-Kleist, C. Wagener, S. Watt, and W. Zimmermann. 1999. Redefined nomenclature for members of the carcinoembryonic antigen family. Exp. Cell Res.252:243-249.
4. Bhat, S., S. L. Spitalnik, F. Gonzalez-Scarano, and D. H. Silberberg. 1991. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA88:7131-7134.
5. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献