In Vivo and In Vitro Analysis of Factor Binding Sites in Jaagsiekte Sheep Retrovirus Long Terminal Repeat Enhancer Sequences: Roles of HNF-3, NF-I, and C/EBP for Activity in Lung Epithelial Cells

Author:

McGee-Estrada Kathleen1,Fan Hung1

Affiliation:

1. Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3905

Abstract

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a contagious lung cancer of sheep that arises from type II pneumocytes and Clara cells of the lung epithelium. Studies of the tropism of this virus have been hindered by the lack of an efficient system for viral replication in tissue culture. To map regulatory regions important for transcriptional activation, an in vivo footprinting method that couples dimethyl sulfate treatment and ligation-mediated PCR was performed in murine type II pneumocyte-derived MLE-15 cells infected with a chimeric Moloney murine leukemia virus driven by the JSRV enhancers (ΔMo+JS Mo-MuLV). In vivo footprints were found in the JSRV enhancers in two regions previously shown to be important for JSRV long terminal repeat (LTR) activity: a binding site for the lung-specific transcription factor HNF-3β and an E-box element in the distal enhancer adjacent to an NF-κB-like binding site. In addition, in vivo footprints were detected in two downstream motifs likely to bind C/EBP and NF-I. Mutational analysis of a JSRV LTR reporter construct (pJS 21 luc) revealed that the C/EBP binding site is critical for LTR activity, while the putative NF-I binding element is less important; elimination of these sites resulted in 70% and 40% drops in LTR activity, respectively. Electrophoretic mobility shift assays using nuclear extracts from MLE-15 murine Clara cell-derived mtCC1-2 cells with probes corresponding to the NF-I or C/EBP sites revealed several complexes. Antiserum directed against NF-IA, C/EBPα, or C/EBPβ supershifted the corresponding protein-DNA complexes, indicating that these isoforms, which are also important for the expression of several cellular lung-specific genes, may be important for JSRV expression in lung epithelial cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3