The Unique IR2 Protein of Equine Herpesvirus 1 Negatively Regulates Viral Gene Expression

Author:

Kim Seong K.1,Ahn Byung C.1,Albrecht Randy A.1,O'Callaghan Dennis J.1

Affiliation:

1. Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932

Abstract

ABSTRACT The IR2 protein (IR2P) is a truncated form of the immediate-early protein (IEP) lacking the essential acidic transcriptional activation domain (TAD) and serine-rich tract and yet retaining binding domains for DNA and TFIIB and nuclear localization signal (NLS). Analysis of the IR2 promoter indicated that the IR2 promoter was upregulated by the EICP0P. The IR2P was first detected in the nucleus at 5 h postinfection in equine herpesvirus 1 (EHV-1)-infected HeLa and equine NBL6 cells. Transient-transfection assays revealed that (i) the IR2P by itself downregulated EHV-1 early promoters ( EICP0 , TK , EICP22 , and EICP27 ) in a dose-dependent manner; (ii) the IR2P abrogated the IEP and the EICP27P (UL5) mediated transactivation of viral promoters in a dose-dependent manner; and (iii) the IR2P, like the IEP itself, also downregulated the IE promoter, indicating that the IEP TAD is not necessary to downregulate the IE promoter. In vitro interaction assays revealed that the IR2P interacts with TATA box-binding protein (TBP). The essential domain(s) of the IR2P that mediate negative regulation were mapped to amino acid residues 1 to 706, indicating that the DNA-binding domain and the NLS of the IR2P may be important for the downregulation. In transient-transfection and virus growth assays, the IR2P reduced EHV-1 production by 23-fold compared to virus titers achieved in cells transfected with the empty vector. Overall, these studies suggest that the IR2P downregulates viral gene expression by acting as a dominant-negative protein that blocks IEP-binding to viral promoters and/or squelching the limited supplies of TFIIB and TBP.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3