PERK Is Required in the Adult Pancreas and Is Essential for Maintenance of Glucose Homeostasis

Author:

Gao Yan12,Sartori Daniel J.3,Li Changhong3,Yu Qian-Chun4,Kushner Jake A.35,Simon M. Celeste1246,Diehl J. Alan124

Affiliation:

1. The Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

3. Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA

4. Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

5. Pediatric Diabetes and Endocrinology, Baylor College of Medicine, and Texas Children's Diabetes and Endocrine Care Center, Texas Children's Hospital, Houston, Texas, USA

6. Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT Germ line PERK mutations are associated with diabetes mellitus and growth retardation in both rodents and humans. In contrast, late embryonic excision of PERK permits islet development and was found to prevent onset of diabetes, suggesting that PERK may be dispensable in the adult pancreas. To definitively establish the functional role of PERK in adult pancreata, we generated mice harboring a conditional PERK allele in which excision is regulated by tamoxifen administration. Deletion of PERK in either young adult or mature adult mice resulted in hyperglycemia associated with loss of islet and β cell architecture. PERK excision triggered intracellular accumulation of proinsulin and Glut2, massive endoplasmic reticulum (ER) expansion, and compensatory activation of the remaining unfolded-protein response (UPR) signaling pathways specifically in pancreatic tissue. Although PERK excision increased β cell death, this was not a result of decreased proliferation as previously reported. In contrast, a significant and specific increase in β cell proliferation was observed, a result reflecting increased cyclin D1 accumulation. This work demonstrates that contrary to expectations, PERK is required for secretory homeostasis and β cell survival in adult mice.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3