Translation of RNAs Synthesized In Vivo and In Vitro from Bacteriophage SP82 DNA

Author:

Hiatt William R.1,Whiteley H. R.1

Affiliation:

1. Department of Microbiology and Immunology, University of Washington, Seattle, Washington 98195

Abstract

The synthesis of 69 phage-specific polypeptides during the infection of Bacillus subtilis with bacteriophage SP82 was detected by pulse-labeling, one-dimensional electrophoresis, and autoradiography. SP82 virions were found to contain approximately 22 polypeptides, most of which were synthesized late in infection; evidence was obtained for the processing of the major virion protein. RNAs extracted at different times during infection were translated by using an Escherichia coli cell-free extract. Only smaller-molecular-weight peptides were produced efficiently in vitro; in the 9,000- to 60,000-molecular-weight range, 50 to 60% of the peptides synthesized in vivo were produced by translation of RNAs extracted from infected cells. Eight of the virion peptides were produced by in vitro translation of RNAs extracted from infected cells. RNAs were synthesized under defined conditions by RNA polymerase extracted from uninfected B. subtilis and by polymerases isolated from cells 8 and 20 min after infection with SP82. Translation of these RNAs yielded characteristic and different patterns of polypeptides. Nine of the 12 polypeptides produced by translation of RNAs synthesized by the host polymerase corresponded in mobility to peptides appearing in vivo in the 0 to 3 and 3 to 6 min intervals of pulse-labeling after infection; 12 of the 25 peptides synthesized from RNAs produced by polymerase extracted 8 min after infection corresponded in mobility to peptides detected in vivo 8 min after infection, and 15 of the 22 peptides directed by RNAs made by the polymerase isolated 20 min after infection corresponded to peptides present in vivo late in infection. Five of the peptides produced in vitro from the latter RNA corresponded to virion peptides.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3