Abstract
We examined the kinetics and the nature of the association of two herpes simplex virus proteins, the major DNA-binding protein (ICP8) and the major capsid protein (ICP5), with the nuclei of infected cells. We defined a series of stages in the association of the ICP8 protein with the cell nucleus. (i) Immediately after synthesis, the protein was found in the cytoplasmic fraction but associated rapidly with the crude nuclear fraction. (ii) The initial association of ICP8 with the crude nuclear fraction was detergent sensitive but DNase resistant, and, thus, the protein was either bound to structures attached to the outside of the nucleus and had not penetrated the nuclear envelope or was loosely bound in the nucleus, (iii) At intermediate times, a low level of an intermediate form was observed in which the association of ICP8 with the nuclear fraction was resistant to both detergent and DNase treatment. The protein may be bound to the nuclear matrix at this stage. Inhibition of viral DNA synthesis caused the DNA-binding protein to accumulate in this form. (iv) At late times during the chase period, the association of ICP8 with the cell nucleus was resistant to detergent treatment but sensitive to DNase treatment. our results argue that at this stage ICP8 was bound to viral DNA. Thus, nuclear association of the DNA-binding protein did not require viral DNA replication. More important is the observation that there is a series of stages in the nuclear association of this protein, and, thus, there may be a succession of binding sites for this protein in the cell during its movement to its final site of action in the nucleus. The major capsid protein showed some similar stages of association with the cell nucleus but the initial association with the nucleus followed a lag period. Its early association with the crude nuclear fraction was also detergent sensitive but was resistant to detergent treatment at later times. Its association with the cell nucleus was almost completely resistant to DNase treatment at all times. Inhibition of viral DNA replication blocked the nuclear transport of this protein. Thus, these two viral proteins share some stages in nuclear transport, although their requirements for nuclear association are different.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献