Heterotrimeric NADH-Oxidizing Methylenetetrahydrofolate Reductase from the Acetogenic Bacterium Acetobacterium woodii

Author:

Bertsch Johannes,Öppinger Christian,Hess Verena,Langer Julian D.,Müller Volker

Abstract

ABSTRACTThe methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na+translocation by the Rnf complex. The enzyme was purified fromAcetobacterium woodiiand shown to have an unprecedented subunit composition containing the three subunits RnfC2, MetF, and MetV. The stable complex contained 2 flavin mononucleotides (FMN), 23.5 ± 1.2 Fe and 24.5 ± 1.5 S, which fits well to the predicted six [4Fe4S] clusters in MetV and RnfC2. The enzyme catalyzed NADH:methylviologen and NADH:ferricyanide oxidoreductase activity but also methylene-tetrahydrofolate (THF) reduction with NADH as the reductant. The NADH:methylene-THF reductase activity was high (248 U/mg) and not stimulated by ferredoxin. Furthermore, reduction of ferredoxin, alone or in the presence of methylene-THF and NADH, was never observed. MetF or MetVF was not able to catalyze the methylene-THF-dependent oxidation of NADH, but MetVF could reduce methylene-THF using methyl viologen as the electron donor. The purified MTHFR complex did not catalyze the reverse reaction, the endergonic oxidation of methyl-THF with NAD+as the acceptor, and this reaction could not be driven by reduced ferredoxin. However, addition of protein fractions made the oxidation of methyl-THF to methylene-THF coupled to NAD+reduction possible. Our data demonstrate that the MTHFR ofA. woodiicatalyzes methylene-THF reduction according to the following reaction: NADH + methylene-THF → methyl-THF + NAD+. The differences in the subunit compositions of MTHFRs of bacteria are discussed in the light of their different functions.IMPORTANCEEnergy conservation in the acetogenic bacteriumAcetobacterium woodiiinvolves ferredoxin reduction followed by a chemiosmotic mechanism involving Na+-translocating ferredoxin oxidation and a Na+-dependent F1FoATP synthase. All redox enzymes of the pathway have been characterized except the methylenetetrahydrofolate reductase (MTHFR). Here we report the purification of the MTHFR ofA. woodii, which has an unprecedented heterotrimeric structure. The enzyme reduces methylene-THF with NADH. Ferredoxin did not stimulate the reaction; neither was it oxidized or reduced with NADH. Since the last enzyme with a potential role in energy metabolism ofA. woodiihas now been characterized, we can propose a quantitative bioenergetic scheme for acetogenesis from H2plus CO2in the model acetogenA. woodii.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3