Affiliation:
1. Department of Microbiology, University of Sydney, New South Wales 2006, Australia
Abstract
The binding of viable
Escherichia coli
cells to an immobilized ligand of a surface receptor for maltodextrins has recently been demonstrated (T. Ferenci and K. S. Lee, J. Mol. Biol.
160
:431-444, 1982). The interaction of bacteria and ligand immobilized in a chromatographic column was investigated over a wide range of applied cell densities, temperatures, eluant pH values, osmotic concentrations, and flow rates. Over 95% retention of bacteria applied to starch-Sepharose was found at cell densities up to 10
9
per ml of matrix, between pH 5.5 and 8.0, between 8 and 55°C, in the presence of 0 to 0.5 M NaCl, and at elution flow rates up to 37 column volumes per h. The catalytic capability and stability of affinity-immobilized cells was demonstrated with the cytoplasmic β-galactosidase activity of starch-bound cells. Intact immobilized bacteria exhibited slowly increasing β-galactosidase activity over several days with a plateau after 6 days. Bacteria made permeable by treatment with toluene were also bound to starch-Sepharose but showed maximum β-galactosidase activity within 1 day and exhibited no loss of enzyme activity in 8 days of continuous elution at ambient temperatures.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献