Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis

Author:

Mitsushima K1,Takimoto A1,Sonoyama T1,Yagi S1

Affiliation:

1. Bioprocess Development Department, Shionogi & Co., Ltd., Osaka, Japan.

Abstract

The gene encoding a cephalosporin-C deacetylase (CAH) from Bacillus subtilis SHS 0133 was cloned and sequenced. The nucleotide sequence contained an open reading frame encoding a polypeptide consisting of 318 amino acids, the molecular weight of which was in good agreement with the value obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The deduced amino acid sequence contained the common sequence Gly-X-Ser-X-Gly found in many esterases, lipases, and serine proteases. This indicates that CAH is a serine enzyme. A possible promoter sequence which is very similar to the consensus sequences of -35 and -10 regions recognized by B. subtilis RNA polymerase utilizing sigma factor H was found in the 5'-flanking region of the CAH structural gene. Two repeated A+T-rich blocks consisting of 24 bp were also found in the upstream region of the initiation codon. We constructed a series of expression plasmids by inserting the CAH gene into Escherichia coli ATG vectors. The degree of CAH gene expression depended on promoters and vector plasmids, which have different replication origins. The expressed CAH protein was an active form in the soluble fraction obtained after cell disruption. The highest expression level was accomplished with an expression plasmid, pCAH400, which has the trp promoter and the replication origin derived from pAT153. In the fermentation using a 30-liter jar fermentor, the transformant E. coli JM103(pCAH400) produced 440 U of CAH per ml of culture during a 24-h incubation. This value corresponded to 2.1 g of CAH protein in 1 liter of culture broth.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3