Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences

Author:

Hurek T1,Reinhold-Hurek B1

Affiliation:

1. Abteilung Biogeochemie, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany.

Abstract

The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thauera selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N2O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3