Recovery of Exocellular Acid Phosphatase Activity on Saccharomyces mellis After Treatment of the Organism with Reagents That Affect the Cell Surface

Author:

Weimberg Ralph1

Affiliation:

1. U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California 92502

Abstract

Derepressed cells of Saccharomyces mellis were treated in one of several different ways to either elute or inactivate the exocellular enzyme, acid phosphatase. The enzyme was either (i) eluted from resting cells with 0.5 m KCl plus 0.1% β-mercaptoethanol, (ii) eluted from exponential phase cells by growing the organism in derepressing media containing 0.5 m KCl, or (iii) inactivated on exponential phase cells by adding sufficient acid or base to growth media to destroy the enzyme but not enough to kill the cells. These treatments did not affect viability. Treated cells were transferred to fresh growth media or some other reaction mixture, and the kinetics of recovery of acid phosphatase activity was studied. In these reaction mixtures, enzyme was synthesized only by actively growing cells. Treated resting cells were indistinguishable from untreated, repressed resting cells in that the organism inoculated into complete growth medium remained in the lag phase for approximately 6 hr before both growth and enzyme synthesis began. Exponential phase derepressed cells treated by method (ii) or (iii) were transferred to fresh medium under conditions that allowed growth to continue. The cells immediately started to manufacture enzyme at a rate greater than normal until the steady-state level was reached, thus demonstrating a feedback control system. Exponential phase repressed cells were also transferred to fresh derepressing media under conditions which sustained growth. Though these cells began to grow immediately, there was a lag before acid phosphatase synthesis began followed by a lengthy inductive period. The length of the period of induction could be correlated with the polyphosphate content of the cells. As the supply of polyphosphate neared exhaustion, the rate of synthesis increased rapidly until it was greater than normal; this differential rate was sustained until the steady-state concentration was reached. When derepressed cells grow in a medium containing 0.5 m KCl, some acid phosphatase activity is found free in the culture fluid and some remains firmly attached to the cells despite the presence of the salt. The bound activity is subject to feedback control, but the steady-state level of this activity on the cells is only one-third that of the acid phosphatase on cells growing in nonsaline media. The extracellular phosphatase is produced at a rate that is several-fold greater than that of the exocellular enzyme in a nonsaline medium. The synthesis of the extracellular enzyme does not seem to be controlled by a feedback mechanism but is produced at a maximal rate as long as the cells are growing.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3