In Vitro Assessment of Antifungal Therapeutic Potential of Salivary Histatin-5, Two Variants of Histatin-5, and Salivary Mucin (MUC7) Domain 1

Author:

Situ Hongsa1,Bobek Libuse A.1

Affiliation:

1. Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214

Abstract

ABSTRACT Human salivary histatin-5 (Hsn-5) is a 24-residue peptide that possesses potent antifungal activity in vitro. The MUC7 gene encodes human salivary low-molecular-weight mucin (MG2). The candidacidal activity of MUC7 domain 1 (MUC7 D1, the N-terminal 51 amino acid residues of MUC7) in vitro has also been demonstrated. In this study, we have investigated the antifungal therapeutic potential of Hsn-5, its two variants, R12I/K17N and R12I/H21L, and MUC7 D1. First, these peptides were tested for activities against different clinically important fungi. We found them to possess broad-spectrum antifungal activities; specifically, most exhibited excellent in vitro activity against eight clinically important fungal strains tested, including Candida albicans and Candida glabrata and their azole-resistant counterparts and Cryptococcus neoformans and its amphotericin B-resistant counterpart. These findings also suggest that the mechanism of action of both Hsn-5 and MUC7 D1 for these fungi is different from that of amphotericin B or azole antifungal agents. Second, we examined the stability of these peptides in whole human saliva and human serum. In saliva, the Hsn-5 variants R12I/K17N and R12I/H21L and MUC7 D1 degraded at a lower rate than Hsn-5. In human serum, MUC7 D1 was also more stable than Hsn-5; both peptides were more stable in serum than in saliva. Third, we examined the cytotoxicity of these peptides using human erythrocytes and two human cell lines (KB and HSG). No (or very low) hemolytic activity was observed with any of the four peptides, even at the highest protein concentration tested (200 μM), while amphotericin B caused 100% hemolysis at only 12.5 μM. The toxic effects of Hsn-5 and MUC7 D1 toward KB and HSG cells were also much lower than that of amphotericin B as measured by trypan blue exclusion. Together, these findings indicate that the investigated peptides possess high antifungal therapeutic potential, in particular for the treatment of drug-resistant fungal strains associated with immunocompromised (particularly human immunodeficiency virus-infected) patients. The same peptides could also be used as components of artificial saliva for patients with salivary dysfunction.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3