Affiliation:
1. CNIO (Spanish National Cancer Centre), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
2. Centro Nacional de Microbiologia, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
Abstract
ABSTRACTContact inhibition is a fundamental process in multicellular organisms aimed at inhibiting proliferation at high cellular densities through poorly characterized intracellular signals, despite availability of growth factors. We have previously identified the protein kinase p38α as a novel regulator of contact inhibition, as p38α is activated upon cell-cell contacts and p38α-deficient cells are impaired in both confluence-induced proliferation arrest and p27Kip1accumulation. Here, we establish that p27Kip1plays a key role downstream of p38α to arrest proliferation at high cellular densities. Surprisingly, p38α does not directly regulate p27Kip1expression levels but leads indirectly to confluent upregulation of p27Kip1and cell cycle arrest via the inhibition of mitogenic signals originating from the epidermal growth factor receptor (EGFR). Hence, confluent activation of p38α uncouples cell proliferation from mitogenic stimulation by inducing EGFR degradation through downregulation of the EGFR-stabilizing protein Sprouty2 (Spry2). Accordingly, confluent p38α-deficient cells fail to downregulate Spry2, providing them in turn with sustained EGFR signaling that facilitates cell overgrowth and oncogenic transformation. Our results provide novel mechanistic insight into the role of p38α as a sensor of cell density, which induces confluent cell cycle arrest via the Spry2-EGFR-p27Kip1network.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献