Involvement of Aminopeptidase N (CD13) in Infection of Human Neural Cells by Human Coronavirus 229E

Author:

Lachance Claude1,Arbour Nathalie1,Cashman Neil R.2,Talbot Pierre J.1

Affiliation:

1. Laboratory of Neuroimmunovirology, Armand-Frappier Institute, University of Quebec, Laval, Quebec H7V 1B7,1 and

2. Montreal Neurological Institute and Hospital, Montreal, Quebec H3A 2B4,2 Canada

Abstract

ABSTRACT Attachment to a cell surface receptor can be a major determinant of virus tropism. Previous studies have shown that human respiratory coronavirus HCV-229E uses human aminopeptidase N (hAPN [CD13]) as its cellular receptor for infection of lung fibroblasts. Although human coronaviruses are recognized respiratory pathogens, occasional reports have suggested their possible neurotropism. We have previously shown that human neural cells, including glial cells in primary cultures, are susceptible to human coronavirus infection in vitro (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800–806, 1997). However, the only reported expression of hAPN in the nervous system is at the level of nerve synapses. Therefore, we asked whether hAPN is utilized as a cellular receptor for infection of these human neural cell lines. Using flow cytometry, we were able to show the expression of hAPN on the surfaces of various human neuronal and glial cell lines that are susceptible to HCV-229E infection. An hAPN-specific monoclonal antibody (WM15), but not control antibody, inhibited the attachment of radiolabeled HCV-229E to astrocytic, neuronal, and oligodendrocytic cell lines. A correlation between the apparent amount of cell surface hAPN and the level of virus attachment was observed. Furthermore, the presence of WM15 inhibited virus infection of these cell lines, as detected by indirect immunofluorescence. These results indicate that hAPN (CD13) is expressed on neuronal and glial cell lines in vitro and serves as the receptor for infection by HCV-229E. This further strengthens the neurotropic potential of this human respiratory virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3