Induction of anaerobic gene expression in Rhodobacter capsulatus is not accompanied by a local change in chromosomal supercoiling as measured by a novel assay

Author:

Cook D N1,Armstrong G A1,Hearst J E1

Affiliation:

1. Department of Chemistry, University of California, Berkeley 94720.

Abstract

In the photosynthetic bacterium Rhodobacter capsulatus, the enzyme DNA gyrase has been implicated in the expression of genes for anaerobic metabolic processes such as nitrogen fixation and photosynthesis. To assess the involvement of supercoiling in anaerobic gene expression, we have developed an assay to detect in vivo changes in superhelicity of small regions of the bacterial chromosome. Our method is based on the preferential intercalaction of psoralen into supercoiled versus relaxed DNA, and we have demonstrated the sensitivity of the assay in vivo on chromosomal regions from 2 to 10 kilobases in size. In experiments with inhibitors of gyrase, the reactivity of individual chromosomal fragments to psoralen decreases by a factor of 1.8 compared with DNA from control cultures. We used our assay to determine whether there is a change in superhelicity near the genes coding for essential proteins for photosynthesis upon a shift from respiratory to anaerobic photosynthetic growth. For comparison, we also examined a restriction fragment containing the fbc operon, which codes for the subunits of cytochrome bc1, a membrane-bound electron transport complex utilized during both aerobic and anaerobic photosynthetic growth. During this shift in growth conditions, the puf and puh mRNAs, coding for structural polypeptides of the photosynthetic apparatus, underwent a six- to eightfold induction, while the amount of mRNA from the fbc locus remained constant. However, we detected no change in the superhelicity of either the genes for photosynthesis or those for the bc1 complex during this metabolic transition. Our data thus do not support a model in which stable changes in chromosomal superhelicity regulate anaerobic gene expression. We suggest instead that the requirement for DNA gyrase in the transcription of photosynthesis genes results from the requirement for a swivel near heavily transcribed regions of the chromosome.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Genetic Context, Supercoiling, and Gene Expression;Organization of the Prokaryotic Genome;2014-04-08

2. Structure and Function of DNA;Biotechnology;2008-03-20

3. Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli;Nucleic Acids Research;2007-06

4. Psoralens and Their Application to the Study of Some Molecular Biological Processes;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

5. Thioredoxin can influence gene expression by affecting gyrase activity;Nucleic Acids Research;2004-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3