Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12

Author:

Roa B B1,Connolly D M1,Winkler M E1

Affiliation:

1. Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

We report that pdxA, which is required for de novo biosynthesis of pyridoxine (vitamin B6) and pyridoxal phosphate, belongs to an unusual, multifunctional operon. The pdxA gene was cloned in the same 3.5-kilobase BamHI-EcoRI restriction fragment that contains ksgA, which encodes the 16S rRNA modification enzyme m6(2)A methyltransferase, and apaH, which encodes diadenosine tetraphosphatase (ApppA hydrolase). Previously, Blanchin-Roland et al. showed that ksgA and apaH form a complex operon (Mol. Gen. Genet. 205:515-522, 1986). The pdxA gene was located on recombinant plasmids by subcloning, complementation, and insertion mutagenesis, and chromosomal insertions at five positions upstream from ksgA inactivated pdxA function. DNA sequence analysis and minicell translation experiments demonstrated that pdxA encoded a 35.1-kilodalton polypeptide and that the stop codon of pdxA overlapped the start codon of ksgA by 2 nucleotides. The translational start codon of pdxA was tentatively assigned based on polypeptide size and on the presence of a unique sequence that was also found near the translational start of PdxB. This conserved sequence may play a role in translational control of certain pyridoxine biosynthetic genes. RNase T2 mapping of chromosomal transcripts confirmed that pdxA and ksgA were members of the same complex operon, yet about half of ksgA transcripts arose in vivo under some culture conditions from an internal promoter mapped near the end of pdxA. Transcript analysis further suggested that pdxA is not the first gene in the operon. These structural features support the idea that pyridoxine-biosynthetic genes are members of complex operons, perhaps to interweave coenzyme biosynthesis genetically with other metabolic processes. The results are also considered in terms of ksgA expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3