Identification of AP80978, a Novel Small-Molecule Inhibitor of Hepatitis C Virus Replication That Targets NS4B

Author:

Dufner-Beattie Jodi,O'Guin Andrew,O'Guin Stephanie,Briley Aaron,Wang Bin,Balsarotti Jennifer,Roth Robert,Starkey Gale,Slomczynska Urszula,Noueiry Amine,Olivo Paul D.,Rice Charles M.

Abstract

ABSTRACTA small-molecule inhibitor of hepatitis C virus (HCV) designated AP89652 was identified by screening a compound library with an HCV genotype 1b subgenomic replicon assay. AP89652 contains two chiral centers, and testing of twosynenantiomers revealed that activity in the replicon assay resided with only one, AP80978, whose 50% effective concentration (EC50) (the concentration at which a 50% reduction inRenillaluciferase levels was observed relative to an untreated control) was 630 nM. AP80978 was inhibitory against HCV genotypes 1a and 1b but not genotype 2a. In a replicon clearance assay, the potency and clearance rate of AP80978 were similar to those of telaprevir (VX950) and cyclosporine (CsA). AP80978 was nontoxic when tested against a panel of human cell lines, and inhibitory activity was HCV specific in that there was limited activity against negative-strand viruses, an alphavirus, and flaviviruses. By selection of resistant replicons and assessment of activity in genotype 1b/2a intergenotypic replicons, the viral protein target of this compound was identified as NS4B. NS4B F98V/L substitutions were confirmed by site-directed mutagenesis as AP80978 resistance-associated mutations. When tested against HCV produced in cell culture, the compound was significantly more potent than other HCV inhibitors, including VX950, CsA, and 2′-C-methyladenosine (2′C-meA). In addition, AP80977, the enantiomer that was inactive in the replicon assay, had activity against the virus, although it was lower than the activity of AP80978. These results suggest that AP80978 has the potential to be optimized into an effective antiviral drug and is a useful tool to further study the role of NS4B in HCV replication.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3