Identification and Characterization of a Novel HIV-1 Nucleotide-Competing Reverse Transcriptase Inhibitor Series

Author:

Rajotte D.,Tremblay S.,Pelletier A.,Salois P.,Bourgon L.,Coulombe R.,Mason S.,Lamorte L.,Sturino C. F.,Bethell R.

Abstract

ABSTRACTSeveral groups have recently reported on the identification of nucleotide-competing reverse transcriptase inhibitors (NcRTIs), a new class of RT inhibitors. NcRTIs reversibly inhibit binding of the incoming nucleotide to the RT active site but do not act as chain terminators, unlike the nucleos(t)ide reverse transcriptase inhibitor (NRTI) class. We identified a novel benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI chemical series. Structure-activity relationship evaluation of this series with both RT and viral replication assays led to the identification of compound A, a new NcRTI. Compound A inhibited HIV-1 RT in a primer extension assay (50% inhibitory concentration, 2.6 nM) but had no measurable activity against human DNA polymerase γ at 10 μM. It potently inhibited HIV-1 replicationin vitro(50% effective concentration, 1.5 nM). The antiviral potency of compound A was unaffected by the presence of nonnucleotide RT inhibitor (NNRTI) mutations tested (L100I, K103N/Y181C, V106A, or Y188L). Notably, viruses encoding K65R were hypersusceptible to inhibition by compound A. Compound A also retained full activity against viruses encoding M184V.In vitroselection for resistant virus to compound A led to the selection of a single substitution within RT: W153L. A recombinant virus encoding the RT W153L was highly resistant to compound A (fold change, 160). W153 is a highly conserved residue in HIV RT and has not been previously associated with drug resistance. In summary, a novel NcRTI series with optimized antiviral activity, minimal cross-resistance to existing RT inhibitor classes, and a distinct resistance profile has been discovered. These results further establish NcRTIs as an emerging class of antiretroviral agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference32 articles.

1. Reverse transcription of the HIV-1 pandemic;Basavapathruni;FASEB J,2007

2. The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention;Tarrago-Litvak;FASEB J,1994

3. Retroviral reverse transcriptases Cell;Herschhorn;Mol. Life Sci,2010

4. Antiretroviral drugs;De Clercq;Curr. Opin. Pharmacol,2010

5. Development of antiretroviral drug resistance;Wainberg;N. Engl. J. Med,2011

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3