Affiliation:
1. Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Center, Ohio 45267-0524.
Abstract
Toxic shock syndrome toxin 1 (TSST-1), a 22-kilodalton protein made by strains of Staphylococcus aureus harboring the chromosomal toxin gene, may elicit toxic shock syndrome in humans. In vitro, TSST-1 induces T cells to proliferate and macrophages to secrete interleukin-1. To conduct a structure-function analysis, point mutations on the TSST-1 gene were generated by site-directed mutagenesis to identify amino acids critical for activity of the toxin. Specific tyrosine and histidine residues were replaced by alanines. Wild-type and mutant TSST-1 gene constructs were expressed in Escherichia coli, and the products were tested for their mitogenic potential and reactivity with a TSST-1 neutralizing monoclonal antibody (MAb 8-5-7). Four of the mutants were similar to the wild type; i.e., the mutant toxins stimulated murine T cells and reacted with MAb 8-5-7 equally as well as the wild type. Two mutants exhibited a decrease in mitogenic activity, but one of these retained the capacity to bind with MAb 8-5-7 while the other was no longer recognized by the same antibody. One double mutant demonstrated minimal mitogenic activity and did not react in enzyme-linked immunosorbent and immunoblot assays with MAb 8-5-7. The data show that specific residues near the carboxy terminus of TSST-1 are essential for mitogenic activity and in forming the epitope recognized by neutralizing MAb 8-5-7.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献