Llama Single-Chain Antibody That Blocks Lipopolysaccharide Binding and Signaling: Prospects for Therapeutic Applications

Author:

El Khattabi Mohamed12345,Adams Hendrik12345,Heezius Erik12345,Hermans Pim12345,Detmers Frank12345,Maassen Bram12345,van der Ley Peter12345,Tommassen Jan12345,Verrips Theo12345,Stam Jord12345

Affiliation:

1. Department of Cellular Architecture and Dynamics, Faculty of Science, Utrecht University, Utrecht

2. Eijkman-Winkler Institute for Medical Microbiology, University Medical Center, Utrecht

3. BAC BV, Naarden

4. Netherlands Vaccine Institute, De Bilt

5. Department of Molecular Microbiology, Faculty of Science, Utrecht University, Utrecht, The Netherlands

Abstract

ABSTRACT Sepsis is a considerable health problem and a burden on the health care system. Endotoxin, or lipopolysaccharide (LPS), present in the outer membrane of gram-negative bacteria, is responsible for more than 50% of the sepsis cases and is, therefore, a legitimate target for therapeutic approaches against sepsis. In this study, we selected and characterized a llama single-chain antibody fragment (VHH) directed to Neisseria meningitidis LPS. The VHH, designated VHH 5G, showed affinity to purified LPS as well as to LPS on the surfaces of the bacteria. Epitope mapping using a panel of N. meningitidis mutants revealed that VHH 5G recognizes an epitope in the inner core of LPS, and as expected, the VHH proved to have broad specificity for LPS from different bacteria. Furthermore, this VHH blocked binding of LPS to target cells of the immune system, resulting in the inhibition of LPS signaling in whole blood. Moreover, it was found to remove LPS efficiently from aqueous solutions, including serum. The selected anti-LPS VHH is a leading candidate for therapies against LPS-mediated sepsis.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3