B7 Costimulation Molecules Expressed from the Herpes Simplex Virus 2 Genome Rescue Immune Induction in B7-Deficient Mice

Author:

Thebeau Lydia G.1,Vagvala Sri P.1,Wong Yee M.1,Morrison Lynda A.1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104

Abstract

ABSTRACT The interaction between B7 costimulation molecules on antigen-presenting cells and CD28 on antigen-responsive T cells is essential for T-cell activation and maturation of immune responses to herpes simplex virus (HSV) infection. Vaccine-induced immune responses also depend upon adequate upregulation of B7 costimulation molecules, but this signal may be limiting for replication-defective virus vaccines. We investigated whether expression of B7 costimulation molecules by a prototypical replication-defective antiviral vaccine could enhance immune responses to the vaccine and whether B7-1 and B7-2 would be similarly effective. We altered an ICP8 replication-defective strain of HSV type 2 (HSV-2), 5BlacZ, to encode either murine B7-1 or B7-2. B7 molecule expression was detected on the surface of cells infected in vitro and at the RNA level in tissue of immunized mice. Immunization of B7-1/B7-2 knockout mice with B7-encoding virus modestly expanded the number of gamma interferon-producing T cells and significantly augmented class-switched HSV-specific antibody responses compared with the parental virus. Mice immunized with either B7-expressing virus showed less replication of challenge virus in the genital mucosa than mice immunized with 5BlacZ, markedly fewer signs of genital and neurological disease, and little weight loss. Virtually all mice immunized with B7-encoding virus survived challenge with a large dose of HSV-2, whereas most 5BlacZ-immunized mice succumbed to infection. These results indicate that protective immune responses can be enhanced by the inclusion of host B7 costimulation molecules in a prototypical replication-defective HSV vaccine against HSV-2 genital infection and that B7-1 and B7-2 induce immune responses with similar capacities to fight HSV-2 infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3