Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3

Author:

Zhou Zishan1,Liu Yuxiao1,Liang Gemei1,Huang Yongping2,Bravo Alejandra3,Soberón Mario3,Song Fuping1,Zhou Xueping1,Zhang Jie1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, People's Republic of China

2. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

3. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico

Abstract

ABSTRACT Bacillus thuringiensis Cry1Ah protein is highly toxic against Helicoverpa armigera but shows no toxicity against Bombyx mori larvae. In contrast, the closely related Cry1Ai toxin showed the opposite phenotype: high activity against B. mori but no toxicity against H. armigera. Analysis of binding of Cry1Ah to brush border membrane vesicle (BBMV) proteins from H. armigera and B. mori by surface plasmon resonance revealed association of toxin binding with insect specificity. Pulldown experiments identified aminopeptidase N1 (APN1) as a Cry1Ah binding protein that was not observed in the assays using B. mori BBMV proteins. The APN1 Cry1Ah binding region was narrowed to the region from A 548 to S 798 (fragment H3) by expressing four different APN1 fragments in Escherichia coli and analyzing Cry1Ah binding by ligand blot. Binding competition experiments of Cry1Ah to APN1 fragment H3 using synthetic peptides corresponding to four predicted domain II loop regions showed that loop 2 and loop 3 have additive effects on binding to APN1 fragment H3. Moreover, switching of loop 2 and loop 3 regions from Cry1Ah to Cry1Ai toxins showed that loop 2 and loop 3 are both involved in specificity and toxicity against H. armigera . IMPORTANCE Domain II loop regions have been shown to be involved in binding to larval gut proteins mediating insect specificity. The modification of loop regions is a direct and effective method to construct new Cry toxin variants to increase toxicity or modify specificity. Our results show that the exchange of loop regions from one toxin into another is a successful scheme for modification of B. thuringiensis Cry toxin specificity.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3